# AMO Theory Research

As a theoretical atomic, molecular and optical physicist, my research looks into the fundamental interactions between the microscopic constituents of the world around us. I am interested in a broad range of topics including few-body scattering and dynamics, Rydberg matter and systems, exotic phases of ultra-cold matter, and quantum transport to name a few.

### Publications

h index = 15

33. “Electric field cancellation on quartz by Rb adsorbate induced negative electron affinity,” J. A. Sedlacek, E. Kim, S. T. Rittenhouse, P. F. Weck, H. R. Sadeghpour, and J. P. Shaffer, Phys. Rev Lett. 116, 133201 (2016).

32. “Hyperspherical approach to a three-boson problem in two dimension with a magnetic field,” S. T. Rittenhouse, A. Wray and B. L. Johnson, Phys. Rev A 93, 012511 (2016).

31. “Two state Bogoliubov theory of a molecular Bose gas,” B. M. Peden, R. M. Wilson, M. L. McLanahan, J. Hall, and S. T. Rittenhouse, Phys. Rev. A 92, 063624 (2015).

30. “A comparative analysis of binding in ultralong-range Rydberg molecules,” C. Fey, M. Kurz, P. Schmelcher, S. T. Rittenhouse, and H. R. Sadeghpour, N. J. Phys. 17, 055010 (2015).

29. “Production of trilobite Rydberg molecule dimers with thousand-Debye permanent electric dipole moments,” D. Booth, S. T. Rittenhouse, J. Yang, H. R. Sadeghpour and J. P. Shaffer, Science 348, 99 (2015).

28. “Spin Waves and Dielectric Softening of Polar Molecule Condensates,” R. M. Wilson, B. M. Peden, C. W. Clark and S. T. Rittenhouse, Phys. Rev. Lett. 112, 135301 (2014).

27. “How do ultra-long-range homonuclear Rydberg molecules get their dipole moments?” H. R. Sadeghpour and S. T. Rittenhouse, Molecular Physics 111 1902 (2013).

26. “ Approach to form long-range ion-pair molecules in an ultracold Rb gas,” A. Kirrander, S. T. Rittenhouse, M. Ascoli, E. E. Eyler, P. L. Gould, and H. R. Sadeghpour, Phys. Rev. A 87, 031402(R) (2013).

25. “Non-universal bound states of two identical heavy fermions and one light particle, ” A. Safavi-Naini, S. T. Rittenhouse, D. Blume and H. R. Sadeghpour, Phys. Rev. A 87, 032713 (2013).

24. “Observation of blue-shifted ultralong-range Cs2 Rydberg molecules,” J. Talant, S. T. Rittenhouse, D. Booth, H. R. Sadeghpour and J. Shaffer, Phys. Rev. Lett. (editor’s suggestion) 109, 173202 (2012).

23. “First-order phase transitions in optical lattices with tunable three-body onsite interactions,” A. Safavi-Naini, J. von Stecher, B. Capogrosso-Sansone and S. T. Rittenhouse, Phys. Rev. Lett. 109, 135302 (2012).

22. “Electric field control in ultralong-range triatomic polar Rydberg molecules,” M. Mayle, S. T. Rittenhouse, P. Schmelcher and H. R. Sadeghpour, Phys. Rev. A 85, 052511 (2012).

21. “A dielectric superfluid of polar molecules,” R. M. Wilson, S. T. Rittenhouse and J. L. Bohn , New J. Phys. 14, 043018 (2012).

20. “A homonuclear molecule with a permanent electric dipole moment,” W. Li, T. Pohl, J. M. Rost, S. T. Rittenhouse, H. R. Sadeghpour, J. Nipper, B. Butscher, J. B. Balewski, V. Bendkowsky, R. Low and T. Pfau, Science 334, 1110 (2011).

19. “Rydberg atom mediated polar molecule interactions: a tool for molecular-state conditional quantum gates and individual addressability ,” E. Kuznetsova, S. T. Rittenhouse, H. R. Sadeghpour and S. F. Yelin, Phys. Chem. Chem. Phys. 13, 17115 (2011).

18. “Three-body RF association of Efimov trimers,” T. V. Tscherbul and S. T. Rittenhouse, Phys. Rev. A 84, 062706 (2011).

17. “Ultralong-range polyatomic Rydberg molecules formed by a polar perturber,” S. T. Rittenhouse, M. Mayle, P. Schmelcher and H. R. Sadeghpour, J. Phys. B 44, 184005 (2011).

16. “The hyperspherical four-fermion problem,” S. T. Rittenhouse, J. von Stecher, J. P. D’Incao, N. P. Mehta and C. H. Greene, J. Phys. B (Topical Review) 44, 172001 (2011).

15. “Green’s functions and the adiabatic hyperspherical method,” S. T. Rittenhouse, N. P. Mehta and C. H. Greene, Phy. Rev. A 82, 022706 (2010).

14. “Three-body recombination of dipoles to weakly bound dimers,” C. Ticknor and S. T. Rittenhouse, Phys. Rev. Lett. (editors suggestion) 105, 013201 (2010).

13. “Ultracold giant polyatomic Rydberg molecules: Coherent control of molecular orientation,” S. T. Rittenhouse and H. R. Sadeghpour, Phys. Rev. Lett. 104, 243002 (2010).

12. “Magnetic Field Dependence and Broadening in Universal Three-Body Recombination Resonances,” S. T. Rittenhouse, Phys. Rev. A 81, 040701(R) (2010).

11. “Hyperspherical Approach to the Four-body Problem,” N. P. Mehta, S. T. Rittenhouse, J. P. D’Incao and C. H. Greene, Atomic Structure and Collision Processes, Editor: Man Mohan, Narosa Publishing House (2010). (Please see the Hyperspherical approach to the four-body problem article)

10. “Collective Coordinate Description of the Degenerate Fermi Gas in an Anisotropic Trap,” S. T. Rittenhouse, M. J. Cavagnero and C. H. Greene, J. Phys. Chem. A 113, 15016 (2009).

9. “A General Theoretical Description of N-Body Recombination,” N. P. Mehta, S. T. Rittenhouse, J. P. D’incao, J. von Stecher and C. H. Greene, Phys. Rev. Lett. 103, 153201 (2009).

8. “Dimer-Dimer Collisions at Finite Energies in Two-Component Fermi Gases,” J. P. D’Incao, S. T. Rittenhouse, N. P. Mehta and Chris H. Greene. Phys. Rev. A 79, 030501 (2009).

7. “Efimov States Embedded in the Three-Body Continuum,” N. P. Mehta, S. T. Rittenhouse, J. P. D’Incao and C. H. Greene, Phys. Rev A. 78, 020701 (2008).

6. “Degenerate Fermi Gas with Density-dependent Interactions in the large N limit under the K Harmonic Approximation,” S. T. Rittenhouse and C. H. Greene, J. Phys. B 41, 205302 (2008).

5. “Stability of Inhomogeneous Multicomponent Fermi Gases,” D. Bume, S. T. Rittenhouse, J. von Stecher and C. H. Greene, Phys. Rev. A 77,033627 (2008).

4. “Hyperspherical Description of the Degenerate Fermi Gas: S-wave Interactions,” S. T. Rittenhouse, M. J. Cavagnero, J. von Stecher and C. H. Greene, Phys. Rev. A 74, 053624 (2006).

3. “A hyperspherical variational approach to the N-body problem,” S. T. Rittenhouse, M. J. Cavagnero, J. von Stecher and C. H. Greene, Few-Body Systems 38, 85-90 (2005).

2. “Physical Interpretation of Orthogonal Hilbert Space Transformations in Tight-Binding Systems with Nonorthogonal Bases,” S. T. Rittenhouse and B. L. Johnson, Phys. Rev. B 71, 035118 (2005).

1. “From Simple Rules to Cycling in Community Assembly,” S. J. Schreiber and S. T. Rittenhouse, Oikos 105, 349-358 (2004).