Skip to main content Skip to footer site map
David C Seal

Most of my pre-prints can be found in the Search Results.

  • M.F. Causley, and D.C. Seal, On the convergence of spectral deferred correction methods (under revision). (Download paper from
  • S. Moe, J.A. Rossmanith, and D.C. Seal, A simple and effective high-order shock-capturing limiter for discontinuous Galerkin methods (under revision). (Download paper from
  • Jochen Schütz, David C. Seal, and Alexander Jaust, Implicit multiderivative collocation solvers for linear partial differential equations with discontinuous Galerkin spatial discretizations, J. Sci. Com., (2017) (Download paper from
  • S. Moe, J.A. Rossmanith, and D.C. Seal, Positivity-preserving discontinuous Galerkin methods with Lax-Wendroff time discretizations, J. Sci. Comp., (2017) (Download paper from
  • Alexander Jaust, Jochen Schütz and David C. Seal, Implicit multistage two-derivative discontinuous Galerkin schemes for viscous conservation laws, J. Sci. Comp., (2016) (Download paper from
  • A.J. Christlieb, X. Feng, D.C. Seal, and Q. Tang, A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations  J. Comp. Phys., (2016) (Download paper from
  • M.F. Causley, H. Cho, A.J. Christlieb, and D.C. Seal, Method of lines transpose: High order L-Stable O(N) schemes for parabolic equations using successive convolution SIAM J. Numer. Anal., (2016) (Download paper from
  • A.J. Christlieb, S. Gottlieb, Z. Grant, and D.C. Seal, Explicit strong stability preserving multistage two-derivative time-stepping scheme, J. Sci. Comp., (2016). (Download paper from
  • D.C. Seal, Q. Tang, Z. Xu, and A.J. Christlieb, An explicit high-order single-stage single-step positivity-preserving finite difference WENO method for the compressible Euler equations, J. Sci. Comp., (2015). (Download paper from
  • A. Jaust, J. Schütz, and D.C. Seal, Multiderivative time-integrators for the hybridized discontinuous Galerkin method, YIC GACM Conference proceedings, 2015. (Download paper)
  • A.J. Christlieb, Y. Güçlü, and D.C. Seal. The Picard integral formulation of weighted essentially non-oscillatory schemes SIAM J. Numer. Anal., 53(4), 1833–1856, 2015. (Download paper from
  • D.C. Seal, Y. Güçlü and A.J. Christlieb. High-order multiderivative time integrators for hyperbolic conservation laws, J. Sci. Comp., Vol. 60, Issue 1, pp 101-140, 2014. (Download paper from
  • J.A. Rossmanith and D.C. Seal. A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comp. Phys., 227: 9527--9553, 2011. (Download paper from
go to Top