Center for High Performance Computing Education and Research
Mission
The Center for High Performance Computing (HPC) is the focal point for HPC research and education across an array of departments at the Naval Academy. It exposes midshipmen at the Naval Academy to the physical HPC resources available to them as future leaders in the US Navy and Marine Corps, and educates them on the theoretical underpinnings of HPC research spanning a variety of scientific disciplines. The center also enables a variety of educational opportunities through its faculty members, including research projects, internship experiences, and initiatives that build up the HPC education program at the US Naval Academy. Lastly, the Center for HPC is a group of like-minded faculty conducting state-of-the-art research in HPC and its applications to science and engineering.
The Center is funded from a variety of sources, but special acknowledgement is due to the continuing support from the DoD HPC Modernization Program.
The mission for the Center for HPC is threefold:
1. to encourage the awareness of and use of HPC technologies throughout the STEM curriculum and beyond at the US Naval Academy;
2. to foster the use of HPC technology in faculty research, and thereby:
3. to provide our midshipmen with the tools, techniques, and talents to become leaders in the DoD science and research communities as they address the Grand Challenges of computing.
Faculty Members
Nate Chambers, CompSci (co-director)
Gavin Taylor, CompSci (co-director)
CDR Stu Blair, MechEng
Frederick Crabbe, CompSci
Adina Crainiceanu, CompSci
CDR Scott Drayton, Aero
Daniel Finkenstadt, Physics
Judith Harrison, Chemistry
Evelyn Lunasin, Math
Reza Malek-Madani, Math
Susan Margulies, Math
Luke McDowell, CompSci
Kevin Mcilhany, Physics
Chris Pettit, Aero
Daniel S. Roche, CompSci
David Seal, Math
Charles Sweet, Chemistry
Will Traves, Math
Ryan Wilson, Physics
Richard Witt, Physics
Publications
Coxson, Gregory, Jon Russo, and Angeline Luther. "Long Low-PSL Binary Codes by Multi-Thread Evolutionary Search", In Proceedings of the IEEE 2020 Radar Conference. 2020.
Nathanael Chambers, Timothy Forman, Catherine Griswold, Yogaish Khastgir, Kevin Lu, Stephen Steckler. "Character-Based Models for Adversarial Phone Number Extraction: Preventing Human Sex Trafficking". In Proceedings of the Workshop on Noisy User-Generated Text at EMNLP-19. Nov 2019. (best paper award)
Milne, Zachary, Schall, J. David, Jacobs, Tevis D.B., Harrison, Judith A., and Carpick, Robert, Covalent Bonding and Atomic-Level Plasticity Increase Adhesion in Silicon−Diamond Nanocontacts", Applied Materials and Interfaces. Volume 11. 2019.
Morrow, Brian H. and Harrison, Judith A., "Vapor−Liquid Equilibrium Simulations of Hydrocarbons Using
Molecular Dynamics with Long-Range Lennard-Jones Interactions", Energy and Fuels, Volume 33, pp 848-858. 2019.
Nathanael Chambers and Ben Fry and James McMasters. "Using Social Media Text to Detect Denial-of-Service Attacks: Applying NLP to Network Security". In Proceedings of NAACL-2018, New Orleans, USA. June 2018.
Morrow, Brian H., Maskey, Sabina, Gustafson, Micah, Luning Prak, Dianne, and Harrison, Judith, "Impact of Molecular Structure on Properties of n‐Hexadecane and Alkylbenzene Binary Mixtures", The Journal of Physical Chemistry, Volume 122. 2018.
Finkenstadt, D. (USNA), Samuel G. Lambrakos, Kevin L. Jensen, Andrew Shabaev, Nathan A. Moody, "Calculation of density of states for modeling photoemission using method of moments," Proc. SPIE 10374, Optical Modeling and Performance Predictions IX, 103740F (6 September 2017);
Finkenstadt, D. (USNA), Samuel G. Lambrakos, Kevin L. Jensen, Andrew Shabaev, Nathan A. Moody, "Density of states of Cs3Sb calculated using density-functional theory for modeling photoemission," Proc. SPIE 10374, Optical Modeling and Performance Predictions IX, 103740L (6 September 2017);
M. Foss-Feig, P. Niroula, J. T. Young, M. Hafezi, A. V. Gorshkov, R. M. Wilson, and M. F. Maghrebi, "Emergent Equilibrium in Many-Body Optical Bistability" Phys. Rev. A 95, 043826 (2017).
Gentile, Roche. The poster "Output-Sensitive Algorithms for Text Search with Wildcards" was presented by MIDN Gentile at the ECCAD 2017 workshop in Champaign, Illinois.
Hall, Roche. The poster "Intelligent Search for Arithmetic Circuit Optimization" was presented by MIDN Hall at the ECCAD 2017 workshop in Champaign, Illinois.
Lunasin. “A Data Assimilation Algorithm: The Paradigm of the 3D Leray-α Model of Turbulence”', (2017), London Mathematical Society Lecture Notes Series, in printing process.
W. Casteels, R. M. Wilson, and M. Wouters, "Gutzwiller Monte Carlo approach for a critical dissipative spin model" arXiv:1709.00693 (2017).
D. Baillie, R. M. Wilson, and P. B. Blakie, "Collective Excitations of Self-Bound Droplets of a Dipolar Quantum Fluid" arXiv:1703.07927 (2017).
Kevin McKelvey, Peter Goutzounis, Stephen da Cruz, and Nathanael Chambers. Aligning Entity Names with Online Aliases on Twitter. 5th International Workshop on NLP for Social Media, Valencia, Spain. 2017.
Mehl, M. (USNA), Hicks, D., Toher, C., Levy, O., Hanson, R.M., Hart, G. and Curtarolo, S. The AFLOW Library of Crystallographic Prototypes: Part 1. Computational Materials Science. 2017.
Joshua R. King and Luke K. McDowell. Correcting Relational Bias to Improve Classification in Sparsely-Labeled Networks. 2016 IEEE/ACM International Conference on Data Science and Advanced Analytics (DSAA2016), October 2016, Montreal, Canada.
Zheng Xu, Gavin Taylor, Hao Li, Mario A. T. Figueiredo, Xiaoming Yuan, Thomas Goldstein. Adaptive Consensus ADMM for Distributed Optimization. ICML 2017.
Yamaguchi, H., Liu, F., DeFazio, J., Villarrubia, C.W.N., Finkenstadt, D. (USNA), Shabaev, A., Jensen, K.L., Pavlenko, V., Mehl, M. (USNA), Lambrakos, S. and Gupta, G., 2017. Active bialkali photocathodes on free-standing graphene substrates. 2D Materials and Applications, 1(1), p.12. www.nature.com/articles/s41699-017-0014-6
Zimmer, Gupta, Atchley, Vazhkudai and Albing. A Multi-Faceted Approach to Job Placement for Improved Performance on Extreme-Scale Systems. SC-16. 2016.
Best Undergraduate Presentation Award: MIDN 1/C Mark Schnabel. Lattice Boltzmann Modeling of Turbine Tip Gap Leakage. American Nuclear Society Student Conference, 2016.
Tom Goldstein, Gavin Taylor, Kawika Barabin, and Kent Sayre. Unwrapping ADMM: Efficient Distributed Computing via Transpose Reduction. In Proceedings of AISTATS. 2016.
Ryan Burmeister*, Gavin Taylor, and Tom Goldstein. Neural Net Weight Initialization via Kernel Approximation. NIPS Workshop on Making Sense of Big Neural Data, 2015.
Luke K. McDowell. Relational Active Learning for Link-Based Classification. (Best Paper Award) IEEE/ACM International Conference on Data Science and Advanced Analytics (DSAA2015), October 2015.
Tom Goldstein, Gavin Taylor, Kawika Barabin*, and Kent Sayre*. Distributed Machine Learning via Transpose Reduction. NIPS Workshop on Making Sense of Big Neural Data, 2015.
Luke K. McDowell, Aaron Fleming*, and Zane Markel*. Evaluating and Extending Latent Methods for Link-Based Classification. Advances in Intelligent Systems and Computing (AISC) 346:227-256, March 2015.
Nathanael Chambers, Victor Bowen*, Ethan Genco*, Xisen Tian*, Eric Young*, Ganesh Harihara*, Eugene Yang*. Identifying Political Sentiment between Nation States with Social Media. In Proceedings of EMNLP-2015. Lisbon, Portugal. 2015.
Mohamed Khochtali*, Daniel S. Roche, and Xisen Tian*. Parallel sparse interpolation using small primes. In Proceedings of the 2015 International Workshop on Parallel Symbolic Computation. ACM, 2015.
Stu Blair, Carl Albing, Alexander Grund, and Andreas Jocksch. Accelerating an MPI Lattice Boltzmann code using OpenACC. In Proceedings of the Second Workshop on Accelerator Programming using Directives (WACCPD '15). ACM, New York, NY. 2015.
Carl Albing. Characterizing Node Orderings for Improved Performance. In Proceedings of the International Workshop in Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems at SC'15. Austin, TX. 2015.